

prosilica

Prosilica PvAPI
Programmers’ Reference Manual

Version 1.20
April, 2009

Prosilica Inc. www.prosilica.com tel: 604.875.8855 fax: 604.875.8856

© 2006-2009 Prosilica Inc. All rights reserved.

 ii

Table of Contents

Table of Contents.. ii

Overview..1

Using the Driver...2

Platform...2

Programming Languages (on Windows)...2

Threading...2

Distribution..2

Driver Installation..3

Using the API...4

Module Version...4

Module Initialization ...4

List available cameras ...4

Opening a camera..5

Setting up the camera & driver..5

Image Acquisition and Capture...6

Error Codes..7

Function Reference ..9

PvAttrEnumGet ...10

PvAttrEnumSet..11

PvAttrExists...12

PvAttrFloat32Get ..13

PvAttrFloat32Set ...14

PvAttrInfo..15

PvAttrIsAvailable..16

PvAttrIsValid...17

PvAttrList ..18

PvAttrRangeEnum...19

PvAttrRangeFloat32..20

PvAttrRangeUint32...21

PvAttrStringGet...22

PvAttrStringSet ...23

PvAttrUint32Get ...24

PvAttrUint32Set ..25

PvCameraClose ...26

PvCameraCount...27

 iii

PvCameraInfo..28

PvCameraInfoByAddr...29

PvCameraIpSettingsChange..30

PvCameraIpSettingsGet ..31

PvCameraList ..32

PvCameraListUnreachable..33

PvCameraOpen..34

PvCameraOpenByAddr...35

PvCaptureAdjustPacketSize..36

PvCaptureEnd..37

PvCaptureQuery ..38

PvCaptureQueueClear ...39

PvCaptureQueueFrame ...40

PvCaptureStart...42

PvCaptureWaitForFrameDone..43

PvCommandRun ...44

PvInitialize...45

PvLinkCallbackRegister..46

PvLinkCallbackUnRegister...47

PvUnInitialize..48

PvUtilityColorInterpolate..49

PvVersion ..50

Attribute Reference..51

Attributes..52

Image Mode...52

Image Format ..52

Acquisition Control ...53

Feature Control..55

IO Control..57

GigE Vision...58

Information..58

Non-Volatile Configuration Files..59

Statistics...60

 1

Overview
This document is the programmer’s reference for Prosilica’s GigE Vision driver and its
Application Programming Interface.

The Prosilica PvAPI interface supports all GigE Vision cameras from Prosilica.

The PvAPI driver interface is a user DLL which communicates with NDIS (Network Driver
Interface Specification) and kernel drivers. (see Figure 1).

Figure 1. Prosilica driver stack.

PvAPI DLL
(pvapi.dll)

Your Application

API (pvapi.h)

Windows
TCP/IP Driver

NDIS Driver
(psligvfilter.sys)

 2

Using the Driver

Platform

The Prosilica driver is supported on the following Microsoft platforms:

• Windows 2000

• Windows XP Professional or Home (32bit or 64bit)

• Windows Vista (32bit or 64bit)

The following alternative platforms are also supported:

• Linux (x86, PPC, x64, arm)

• QNX 6.3 (x86), 6.3 + Core Networking 6.4, 6.4 Beta

• Mac OS X (x86, PPC 32bit, x64)

The GigE Vision driver works with any Ethernet interface. If the optional GigE Filter driver is
installed, the CPU load on the host will significantly be reduced (this is only available on
Windows platforms).

Programming Languages (on Windows)

The user DLL (“pvapi.dll”) is a standard-call DLL, which is accessible by most programming
languages.

Required C header files (“PvAPI.h” and “PvRegIO.h”) are included in the SDK.

Most compiled languages need an import library to call a DLL. An import library (“PvAPI.lib”)
for Microsoft Visual Studio 6.0 and later is included in the SDK. Most compilers come with a
tool to generate an import library from a DLL; see your compiler’s manual for more information.

Threading

The driver is thread safe, with a few exceptions as noted in this document.

Distribution

The following files may be redistributed for use with Prosilica cameras only:

On Windows:
 pvapi.dll
 psligvfilter.inf
 psligvfilter_m.inf
 psligvfilter.sys

Prosilica GigE Filter Installer.exe
Prosilica Viewer Installer.exe

On other platforms:

libPvAPI.so

libPvAPI.a

 3

libImagelib.a

No other files from the SDK may be redistributed without written permission from Prosilica Inc.

Driver Installation

The PvAPI DLL should be installed in your application’s directory. This ensures that the correct
version of PvAPI is available to your application.

Here are two mechanisms for installing the GigE Filter driver (Windows only):

1. Run “Prosilica GigE Filter Installer.exe”. You can use the command line option “/S”
to perform a silent installation.

2. Install the following files:
psligvfilter.sys - Copy to %system32%\drivers
psligvfilter.inf - Copy to %windir%\inf
psligvfilter_m.inf - Copy to %windir%\inf

Once installed, the GigE Filter driver will display as a service in Network adapter properties,
where you can enable/disable it.

 4

Using the API

Module Version

As new features are introduced to PvAPI, your software may not support older versions of
PvAPI. In this case, use PvVersion to check the version number of PvAPI.

Module Initialization

Before calling any PvAPI functions (other than PvVersion), you must initialize the PvAPI
module by calling PvInitialize.

When you are finished with PvAPI, call PvUnInitialize to free resources. These two API
functions must always be paired. It is possible, although not recommended, to call the pair
several times within the same program.

List available cameras

Function PvCameraList will enumerate all Prosilica cameras connected to the system

Example:

tPvCameraInfo list[10];
unsigned long numCameras;

numCameras = PvCameraList(list, 10, NULL);

// Print a list of the connected cameras
for (unsigned long i = 0; i < numCameras; i++)
 printf("%s [ID %u]", list[i].SerialString, list[i] .UniqueId);

The tPvCameraInfo structure provides the following information about a camera:

UniqueId A value unique to each camera shipped by Prosilica.

SerialString The full part & serial number of the camera, for example
“02-1000A-10580”.

PartNumber

PartVersion

Together, the part number and part version identify the
type of camera.

PermittedAccess Type of access allowed: master (full control) or monitor
(read only).

InterfaceId An ID value for each interface or bus. The interface ID
may change each time PvAPI is initialized.

InterfaceType The interface type, i.e. Firewire or Ethernet.

DisplayName People-friendly camera name, for example “GE1380”.

To be notified when a camera is detected or disconnected, use PvLinkCallbackRegister. Your
callback function must be thread safe.

 5

Opening a camera

A camera must be opened to control and capture images. Function PvCameraOpen is used to
open the camera.

Example:

tPvCameraInfo info;
unsigned long numCameras;
tPvHandle handle;

numCameras = PvCameraList(info, 1, NULL);

// Open the first camera found, if it’s not already open. (See
// function reference for PvCameraOpen for a more complex example.)
if ((numCameras == 1) && (item.PermittedAccess & eP vAccessMaster))

PvCameraOpen(item.UniqueId, ePvAccessMaster, &handl e);

The camera must be closed when the application is finished.

Setting up the camera & driver

Attributes are used to control and monitor various aspects of the driver and camera(s).

For example, to start continuous acquisition, set attribute AcquisitionMode to Continuous and run
the command-attribute AcquisitionStart:

PvCaptureStart(Camera);
PvAttrEnumSet(Camera, "AcquisitionMode", "Continuou s");
PvCommandRun(Camera, "AcquisitionStart");

For example, to change the exposure time, set attribute ExposureValue:

PvAttrUint32Set(Camera, "ExposureValue", 10000); / / 10000 µs

For example, to read the image size in bytes:

// If you want to ensure portable code, you might c hoose to use
// tPvUint32 or your own typedef, in place of "unsi gned long".

unsigned long imageSize;

PvAttrUint32Get(Camera, "TotalBytesPerFrame", &imag eSize);

Table 1 introduces the basic attributes found on all cameras. For a complete list, see the
Attribute Reference on page 51. An attribute has a name, a type, and access flags such as read-
permitted and write-permitted.

Table 1. List of the basic attributes, found on all cameras.

Attribute Type AccessFlags Description

AcquisitionMode Enumeration R/W The acquisition mode of the camera. Value set:
{ Continuous,SingleFrame, MultiFrame, Recorder}.

AcquisitionStart Command Start acquiring images.

AcquisitionStop Command Stop acquiring images.

AcquisitionAbort Command Stop acquiring images (abort any on-going exposure)

 6

PixelFormat Enumeration R/W The image format. Value set: {Mono8, Mono16, Bayer8,
Bayer16, Rgb24, Rgb48, Yuv411, Yuv422, Yuv444}.

Width Uint32 R/W Image width, in pixels.

Height Uint32 R/W Image height, in pixels.

TotalBytesPerFrame Uint32 R Number of bytes per image.

Function PvAttrList is used to list all attributes available for a camera. This list remains static
while the camera is opened.

To get information on an attribute, such as its type and access flags, call function PvAttrInfo.

PvAPI currently defines the following attribute types (tPvDatatype):

Enumeration A set of values. Values are represented as strings.

Uint32 32-bit unsigned value.

Float32 32-bit IEEE floating point value.

String A string (null terminated, char[]).

Command Valueless; a function executes when the attribute is written.

PvAPI currently defines the following access flags (tPvAttributeFlags):

Read The attribute may be read.

Write The attribute may be written.

Volatile The camera may change the attribute value at any time. An
example of a volatile attribute is ExposureValue, because the
exposure is always changing if the camera is in auto-expose mode.

Constant The attribute value will never change.

Table 2 lists the PvAPI functions used to access attributes.

Table 2. Functions for reading and writing attributes.

Attribute Type Set Get Range

Enumeration PvAttrEnumSet PvAttrEnumGet PvAttrRangeEnum

Uint32 PvAttrUint32Set PvAttrUint32Get PvAttrRangeUint32

Float32 PvAttrFloat32Set PvAttrFloat32Get PvAttrRangeFloat32

String PvAttrStringSet PvAttrStringGet n/a

Command PvCommand n/a n/a

Image Acquisition and Capture

To obtain an image from your camera, first setup PvAPI to capture images, then start acquisition
on the camera. These two concepts – capture and acquisition – while related, are independent
operations as it is shown bellow:

To capture images sent by the camera, follow these steps:

 7

1. PvCaptureStart – initialize the image capture stream.

2. PvCaptureQueueFrame – queue frame buffer(s). As images arrive from the
camera, they are placed in the next frame buffer in the queue, and returned to the
user.

3. When done, PvCaptureEnd – close the image capture stream.

None of the steps above cause the camera to acquire an image. To effect image acquisition on
the camera, follow these steps:

1. Set attribute AcquisitionMode.

2. Run command attribute AcquisitionStart.

3. When done, depending on the application, run command attribute AcquisitionEnd.

Normally, image capture is initialized and frame buffers are queued before the command
AcquisitionStart is run, but the order can vary depending on the application. To guarantee a
particular image is captured, you must ensure that your frame buffer is queued before the camera
is instructed to start acquisition.

Image Capture

Images are captured using the asynchronous function PvCaptureQueueFrame. Allocate an
image buffer (use attribute TotalBytesPerFrame or calculate the size yourself), fill out a
tPvFrame structure, and place the frame structure on the queue with PvCaptureQueueFrame.

Before a queued image buffer can be used or the frame structure modified, the application needs
to know when the image capture is complete. Two mechanisms are available: either block your
thread until capture is complete using PvCaptureWaitForFrameDone, or specify a callback
function when you run PvCaptureQueueFrame. Your callback function is run by the driver
when image capture is complete.

NOTE: Always check that tPvFrame->Status equals ePvErrSuccess, when a frame returned to
you to ensure the data is valid. For example: lost data over the GigE network (usually the result
of an improperly configured camera or network card) will result in ePvErrDataMissing, meaning
the complete frame has not been received by the host.

Many frames can be placed on the frame queue, and their image buffers will be filled in the same
order they were queued. Up to 100 frames may be queued at one time. To capture more images,
keep submitting new frames as the old frames complete. Most applications need not queue more
than 2 or 3 frames at a time.

If you want to cancel all the frames on the queue, call PvCaptureQueueClear. The status of the
frame is set to ePvErrCancelled and, if applicable, the callbacks are run.

Image Acquisition

Image acquisition is setup via attributes AcquisitionMode, AcquisitionStart, and AcquisitionStop.
See the Attribute Reference for more information.

Error Codes

Most PvAPI functions return a tPvErr-type error code.

 8

Typical errors are listed with each function in the reference section of this document. However,
any of the following error codes might be returned:

ePvErrSuccess Success – no error.

ePvErrCameraFault Unexpected camera fault.

ePvErrInternalFault Unexpected fault in PvAPI or driver.

ePvErrBadHandle Camera handle is bad.

ePvErrBadParameter Function parameter is bad.

ePvErrBadSequence Incorrect sequence of API calls. For example, queuing a
frame before starting image capture.

ePvErrNotFound Returned by PvCameraOpen when the requested camera
is not found.

ePvErrAccessDenied Returned by PvCameraOpen when the camera cannot be
opened in the requested mode, because it is already in
use by another application.

ePvErrUnplugged Returned when the camera has been unexpectedly
unplugged.

ePvErrInvalidSetup Returned when the user attempts to capture images, but
the camera setup is incorrect.

ePvErrResources Required system or network resources are unavailable.

ePvErrQueueFull The frame queue is full.

ePvErrBufferTooSmall The frame buffer is too small to store the image.

ePvErrCancelled Frame is cancelled. This is returned when frames are
aborted using PvCaptureQueueClear.

ePvErrDataLost The data for this frame was lost. The contents of the
image buffer are invalid.

ePvErrDataMissing Some of the data in this frame was lost.

ePvErrTimeout Timeout expired. This is returned only by functions with
a specified timeout.

ePvErrOutOfRange The attribute value is out of range.

ePvErrWrongType This function cannot access the attribute, because the
attribute type is different.

ePvErrForbidden The attribute cannot be written at this time.

ePvErrUnavailable The attribute is not available at this time.

ePvErrFirewall Windows’ firewall is blocking the streaming port.

Function Reference

 10

PvAttrEnumGet

Get the value of an enumeration attribute.

Prototype

tPvErr PvAttrEnumGet
(
 tPvHandle Camera,
 const char* Name,
 char* pBuffer,
 unsigned long BufferSize,
 unsigned long* pSize
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pBuffer The value string (always null terminated) is copied here. This buffer is
allocated by the caller.

BufferSize The size of the allocated buffer.

pSize The size of the value string is returned here. This may be bigger than
BufferSize! Null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an enumeration type.

 11

PvAttrEnumSet

Set the value of an enumeration attribute.

Prototype

tPvErr PvAttrEnumSet
(
 tPvHandle Camera,
 const char* Name,
 const char* Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value The enumeration value (a null terminated string).

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is not a member of the current enumeration set.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an enumeration type.

 12

PvAttrExists

Query: does an attribute exist?

Prototype

tPvErr PvAttrExists
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess The attribute exists.

ePvErrNotFound The attribute does not exist.

Notes

The result of this query is static for this camera; it won’t change while the camera is open.

 13

PvAttrFloat32Get

Get the value of a Float32 attribute.

Prototype

tPvErr PvAttrFloat32Get
(
 tPvHandle Camera,
 const char* Name,
 tPvFloat32* pValue
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pValue Value is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Float32 type.

 14

PvAttrFloat32Set

Set the value of a Float32 attribute.

Prototype

tPvErr PvAttrFloat32Set
(
 tPvHandle Camera,
 const char* Name,
 tPvFloat32 Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value Value to set.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is out of range at this time.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Float32 type.

 15

PvAttrInfo

Get information, such as data type and access mode, on a particular attribute.

Prototype

tPvErr PvAttrInfo
(
 tPvHandle Camera,
 const char* Name,
 tPvAttributeInfo* pInfo
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pInfo The attribute information is copied here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

Notes

 16

PvAttrIsAvailable

Query: is the attribute available at this time / for this camera model?

Prototype

tPvErr PvAttrIsAvailable
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess The attribute is available.

ePvErrUnavailable The attribute is unavailable at this time.

ePvErrNotFound The attribute does not exist.

Notes

If an attribute is unavailable, it means the attribute cannot be read or changed.

The result of this query is dynamic. The availability of a particular attribute may change at any
time, depending on the state of the camera and the values of other attributes.

 17

PvAttrIsValid

Query: is the value of an attribute valid / within range?

Prototype

tPvErr PvAttrIsValid
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess The attribute value is in range.

ePvErrOutOfRange The attribute value is out of range.

ePvErrNotFound The attribute does not exist.

 18

PvAttrList

List all the attributes applicable to a camera.

Prototype

tPvErr PvAttrList
(
 tPvHandle Camera,
 tPvAttrListPtr* pListPtr,
 unsigned long* pLength
);

Parameters

Camera Handle to open camera.

pListPtr The pointer to the attribute list is returned here. The attribute list is
owned by the PvAPI module, and remains static while the camera is
opened. The attribute list is an array of string pointers.

pLength The length of the attribute list is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

Example

List the available attributes:

tPvAttrListPtr listPtr;
unsigned long listLength;

if (PvAttrList(Camera, &listPtr, &listLength) == eP vErrSuccess)
{
 for (int i = 0; i < listLength; i++)
 {
 const char* attributeName = listPtr[i];

 printf("Attribute %s\n", attributeName);
 }
}

 19

PvAttrRangeEnum

Get the set of values for an enumerated attribute.

Prototype

tPvErr PvAttrRangeEnum
(
 tPvHandle Camera,
 const char* Name,
 char* pBuffer,
 unsigned long BufferSize,
 unsigned long* pSize
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pBuffer A comma separated string (no white-space, always null terminated),
representing the enumeration set, is copied here. This buffer is allocated
by the caller.

BufferSize The size of the allocated buffer.

pSize The size of the enumeration set string is returned here. This may be
bigger than BufferSize! Null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not an enumeration type.

ePvErrBadParameter The supplied buffer is too small to fit the string

Notes

The enumeration set is dynamic. For some attributes, the set may change under various
circumstances.

Example

List the acquisition modes (for clarity we use strtok, but please research its limitations):
char enumSet[1000];

if (PvAttrRangeEnum(Camera, "AcquisitionMode",
 enumSet, sizeof(enumSet), NULL) == ePvErrSuccess)
{
 char* member = strtok(enumSet, ","); // strtok is n't always thread safe!

 while (member != NULL)
 {
 printf("Mode %s\n", member);
 member = strtok(NULL, ",");
 }
}

 20

PvAttrRangeFloat32

Get the value range of a Float32 attribute.

Prototype

tPvErr PvAttrRangeFloat32
(
 tPvHandle Camera,
 const char* Name,
 tPvFloat32* pMin,
 tPvFloat32* pMax
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pMin Minimum value returned here.

pMax Maximum value returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Float32 type.

Notes

In some cases, the value range is dynamic.

 21

PvAttrRangeUint32

Get the value range of a Uint32 attribute.

Prototype

tPvErr PvAttrRangeUint32
(
 tPvHandle Camera,
 const char* Name,
 tPvUint32* pMin,
 tPvUint32* pMax
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pMin Minimum value returned here.

pMax Maximum value returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Uint32 type.

Notes

In some cases, the value range is dynamic.

 22

PvAttrStringGet

Get the value of a string attribute.

Prototype

tPvErr PvAttrStringGet
(
 tPvHandle Camera,
 const char* Name,
 char* pBuffer,
 unsigned long BufferSize,
 unsigned long* pSize
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pBuffer The value string (always null terminated) is copied here. This buffer is
allocated by the caller.

BufferSize The size of the allocated buffer.

pSize The size of the value string is returned here. This may be bigger than
BufferSize! Null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a string type.

 23

PvAttrStringSet

Set the value of a string attribute.

Prototype

tPvErr PvStringSet
(
 tPvHandle Camera,
 const char* Name,
 const char* Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value The string value (always null terminated).

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a string type.

 24

PvAttrUint32Get

Get the value of a Uint32 attribute.

Prototype

tPvErr PvAttrUint32Get
(
 tPvHandle Camera,
 const char* Name,
 tPvUint32* pValue
);

Parameters

Camera Handle to open camera.

Name Attribute name.

pValue Value is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Uint32 type.

 25

PvAttrUint32Set

Set the value of a Uint32 attribute.

Prototype

tPvErr PvAttrUint32Set
(
 tPvHandle Camera,
 const char* Name,
 tPvUint32 Value
);

Parameters

Camera Handle to open camera.

Name Attribute name.

Value Value to set.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrOutOfRange The value is out of range at this time.

ePvErrForbidden The attribute cannot be set at this time.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a Uint32 type.

 26

PvCameraClose

Close a camera.

Prototype

void PvCameraClose
(
 tPvHandle Camera
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrBadHandle Camera handle is bad.

Notes

Open cameras should always be closed, even if they have been unplugged.

 27

PvCameraCount

Get the number of Prosilica cameras visible to this system.

Prototype

unsigned long PvCameraCount
(
 void
);

Parameters

None.

Return Value

The number of cameras visible to the system.

Notes

The number of cameras is dynamic; it may change at any time.

 28

PvCameraInfo

Get information on a specified camera.

Prototype

tPvErr PvCameraInfo
(
 unsigned long UniqueId,
 tPvCameraInfo* pInfo
);

Parameters

UniqueId Unique ID of camera.

pInfo Camera information is returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

The specified camera must be visible to the system (i.e. on a local subnet), and using Prosilica’s
driver.

See PvCameraList (page 32) if you want to retrieve information for all cameras.

 29

PvCameraInfoByAddr

Get information on a camera, specified by its IP address. This function is required if the GigE
camera is not on the local IP subnet.

Prototype

tPvErr PvCameraInfoByAddr
(
 unsigned long IpAddr,
 tPvCameraInfo* pInfo,
 tPvIpSettings* pIpSettings
);

Parameters

IpAddr IP address of camera, in network byte order.

pInfo Camera information is returned here.

pIpSettings Camera IP settings is returned here. See PvApi.h.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

This function works if a camera is on the other side of an IP gateway. In this case, the camera's
IP address must be known, because it will not be visible to either PvCameraList or
PvCameraListUnreachable.

 30

PvCameraIpSettingsChange

Change the IP settings for a GigE Vision camera. This command will work for all cameras on
the local Ethernet network, including "unreachable" cameras.

Prototype

tPvErr PvCameraIpSettingsChange
(
 unsigned long UniqueId,
 const tPvIpSettings* pIpSettings
);

Parameters

UniqueId Unique ID of camera.

pIpSettings Camera IP settings to be applied to the camera. See PvApi.h.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

All IP related fields in the tPvIpSettings structure are in network byte order.

This command will not work for cameras accessed through an IP router.

 31

PvCameraIpSettingsGet

Get the IP settings for a GigE Vision camera. This command will work for all cameras on the
local Ethernet network, including "unreachable" cameras.

Prototype

tPvErr PvCameraIpSettingsGet
(
 unsigned long UniqueId,
 tPvIpSettings* pIpSettings
);

Parameters

UniqueId Unique ID of camera.

pIpSettings Camera IP settings is returned here. See PvApi.h.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The specified camera could not be found.

Notes

All IP related fields in the tPvIpSettings structure are in network byte order.

This command will not work for cameras accessed through an IP router.

 32

PvCameraList

List the Prosilica cameras currently visible to this system.

Prototype

unsigned long PvCameraList
(
 tPvCameraInfo* pList,
 unsigned long ListLength,
 unsigned long* pConnectedNum
);

Parameters

pList Array of tPvCameraInfo, allocated by the caller. The camera list is
returned in this array.

ListLength Length of pList array.

pConnectedNum The number of cameras found is returned here. This may be greater
than ListLength. Null pointer is allowed.

Return Value

Number of pList array entries filled, up to ListLength.

Notes

Lists only the cameras which are turned on and using Prosilica’s drivers.

If you expect a particular camera to be present, alternatively you can use PvCameraInfo (page
28) to retrieve more information.

Example

See example for PvCameraOpen on page 34.

 33

PvCameraListUnreachable

List all the cameras currently inaccessible by PvAPI. This lists the GigE Vision cameras which
are connected to the local Ethernet network, but are on a different subnet.

Prototype

unsigned long PvCameraListUnreachable
(
 tPvCameraInfo* pList,
 unsigned long ListLength,
 unsigned long* pConnectedNum
);

Parameters

pList Array of tPvCameraInfo, allocated by the caller. The camera list is
returned in this array.

ListLength Length of pList array.

pConnectedNum The number of cameras found is returned here. This may be greater
than ListLength. Null pointer is allowed.

Return Value

Number of pList array entries filled, up to ListLength.

Notes

Lists only the cameras which are turned on, and connected to the local Ethernet network but on
an inaccessible IP subnet. Usually this means the camera's IP settings are invalid.

If you expect a particular camera to exist on a different subnet, use PvCameraInfoByAddr (page
28) to retrieve more information.

Example

See example for PvCameraOpen on page 34.

 34

PvCameraOpen

Open a camera.

Prototype

tPvErr PvCameraOpen
(
 unsigned long UniqueId,
 tPvAccessFlags AccessFlag,
 tPvHandle* pCamera
);

Parameters

UniqueId Camera’s unique ID. This might be acquired through a previous call to
PvCameraList.

AccessFlag Access mode: monitor (listen only) or master (full control).

pCamera Handle to open camera returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrAccessDenied Camera could not be opened in the requested access mode,
because another application (possibly on another host) is using
the camera.

ePvErrNotFound Camera with the specified unique ID is not found. You will also
get this error if the camera was unplugged between
PvCameraList and PvCameraOpen.

Notes

Camera must be closed (see PvCameraClose on page 26) when no longer required.

Example
tPvHandle OpenFirstCamera(void)
{
 tPvCameraInfo list[10];
 unsigned long numCameras;

 // List available cameras.
 numCameras = PvCameraList(list, 10, NULL);

 for (unsigned long i = 0; i < numCameras; i++)
 {
 // Find the first unopened camera...
 if (list[i].PermittedAccess == ePvAccessMaster)
 {
 tPvHandle handle;

 // Open the camera.
 if (PvCameraOpen(list[i].UniqueId, &handle) == e PvErrSuccess)
 return handle;
 }
 }
 return 0;

}

 35

PvCameraOpenByAddr

Open a camera using its IP address. This function can be used to open a GigE Vision camera
located on a different IP subnet.

Prototype

tPvErr PvCameraOpen
(
 unsigned long IpAddr,
 tPvAccessFlags AccessFlag,
 tPvHandle* pCamera
);

Parameters

IpAddr Camera’s IP address, in network byte order.

AccessFlag Access mode: monitor (listen only) or master (full control).

pCamera Handle to open camera returned here.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrAccessDenied Camera could not be opened in the requested access mode,
because another application (possibly on another host) is using
the camera.

ePvErrNotFound Camera with the specified IP address is not found. You will also
get this error if the camera was unplugged between
PvCameraListUnreachable and PvCameraOpenByAddr.

Notes

Camera must be closed (see PvCameraClose on page 26) when no longer required.

 36

PvCaptureAdjustPacketSize

Function will determine the maximum packet size supported by the system (ethernet adapter)
and then configure the camera to use this value.

Prototype

tPvErr PvCaptureAdjustPacketSize
(
 tPvHandle Camera,
 unsigned long MaximumPacketSize
);

Parameters

Camera Handle to open camera.

MaximumPacketSize Upper limit: the packet size will not be set higher than this value.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

ePvErrBadSequence Capture already started

Notes

This cannot be called when a capture is in progress.

On power up, Prosilica cameras have a packet size of 8228. If your network does not support this
packet size, and you haven’t called PvCaptureAdjustPacketSize to detect and set the maximum
possible packet size, you will see dropped frames.

 37

PvCaptureEnd

Shut down the image capture stream.

Prototype

tPvErr PvCaptureEnd
(
 tPvHandle Camera,
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

Notes

This cannot be called until the capture queue is empty. Function PvCaptureQueueClear (page
39) can be used to cancel all remaining frames.

 38

PvCaptureQuery

Query: has the image capture stream been started? That is, has PvCaptureStart been called?

Prototype

tPvErr PvCaptureQuery
(
 tPvHandle Camera,
 unsigned long* pIsStarted
);

Parameters

Camera Handle to open camera.

pIsStarted Has the capture stream been started? 1=yes, 0=no.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

 39

PvCaptureQueueClear

Clear the frame queue. Incomplete frames are returned with status ePvErrCancelled.

Prototype

tPvErr PvCaptureQueueClear
(
 tPvHandle Camera
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

Notes

All applicable frame callbacks are run. After this call completes, all frame callbacks are
complete.

This function cannot be run from a frame callback. See PvCaptureQueueFrame on page 40.

The completion timing of PvCaptureWaitForFrameDone is indeterminate, i.e. it may or may not
complete before PvCaptureQueueClear completes.

Note that if another frame is being queued at the same time as PvCaptureQueueClear, the results
are indeterminate. If using frame callbacks, be sure to stop re-queuing frames before your call
to PvCaptureQueueClear.

 40

PvCaptureQueueFrame

Place an image buffer onto the frame queue. This function returns immediately; it does not wait
until the frame has been captured.

Prototype

tPvErr PvCaptureQueueFrame
(
 tPvHandle Camera,
 tPvFrame* pFrame,
 tPvFrameCallback Callback
);

Parameters

Camera Handle to open camera.

pFrame Frame structure which describes the frame buffer. This structure,
unique to each queued frame, must persist until the frame has been
captured.

Callback Callback to run when the frame has been completed (either successfully,
or in error). Optional; null pointer is allowed.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

ePvErrBadSequence You cannot queue frames until the capture stream has started.

ePvErrQueueFull The frame queue is full.

Notes

PvCaptureQueueFrame cannot be called until the image capture stream has started.

PvCaptureQueueFrame enables the capture of an acquired frame, but it does not trigger the
acquisition; see attributes AcquisitionMode, AcquisitionStart, and AcquisitionStop.

Before you call PvCaptureQueueFrame, these frame structure fields must be filled:

ImageBuffer Pointer to your allocated image buffer. The allocated image
buffer may be larger than required.

ImageBufferSize Size of your image buffer, in bytes.
AncillaryBuffer Pointer to your allocated ancillary buffer, if AncillaryBufferSize

is non-zero.
AncillaryBufferSize Size of your ancillary buffer, in bytes. Can be 0.

The use of field Context[4] is defined by the caller.

When the frame is complete, these fields are filled by the driver:

Status tPvErr type error code.
ImageSize Size of this frame, in bytes. May be smaller than BufferSize.

 41

AncillarySize Ancillary data size, in bytes.
Width Width of this frame.
Height Height of this frame.
RegionX Start of readout region, left.
RegionY Start of readout region, top.
Format Format of this frame (see tPvImageFormat).
BitDepth Bit depth of this frame.
BayerPattern Bayer pattern, if applicable.
FrameCount Rolling frame counter. For GigE Vision cameras, this

corresponds to the block number, which rolls from 1 to 0xFFFF
Timestamp Time of exposure-start, in timestamp units.

PvCaptureQueueFrame is an asynchronous capture mechanism; it returns immediately, rather
than waiting for a frame to complete.

To determine when a frame is complete, use one of these mechanisms:

1. Call PvCaptureWaitForFrameDone
The function PvCaptureWaitForFrameDone blocks the calling thread until the frame
is complete.

2. Use a callback
When the frame is complete, the callback is run on an internal PvAPI thread. When
the callback starts, the frame is complete and you are free to deallocate both the frame
structure and the image buffer. The supplied callback function must be thread-safe.
Note that PvCaptureQueueClear cannot be run from the callback.

To cancel all the frames on the queue, see PvCaptureQueueClear on page 39.

The capacity of the frame queue is 100 frames. Pushing on the queue 100 frame is in most case
not necessary as the best solution is to reuse previously acquired frames to store new frames.

 42

PvCaptureStart

Start the image capture stream. This initializes both the camera and the host in preparation to
capture acquired images.

Prototype

tPvErr PvCaptureStart
(
 tPvHandle Camera
);

Parameters

Camera Handle to open camera.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrUnplugged Camera was unplugged.

ePvErrResources Required system resources were not available.

ePvErrBandwidth Insufficient Firewire bandwidth to start image capture stream.

Notes

As images arrive from the camera, they are stored in the buffer at the head of the frame queue.
To submit buffers to the frame queue, call PvCaptureQueueFrame (page 40).

This function does not start image acquisition on the camera; rather, it establishes the data
stream. To control image acquisition, see attributes AcquisitionMode, AcquisitionStart, and
AcquisitionStop.

 43

PvCaptureWaitForFrameDone

Block the calling thread until a frame is complete.

Prototype

tPvErr PvCaptureWaitForFrameDone
(
 tPvHandle Camera,
 const tPvFrame* pFrame,
 unsigned long Timeout
);

Parameters

Camera Handle to open camera.

pFrame Frame structure, as passed to PvCaptureQueueFrame.

Timeout Timeout, in milliseconds. Use PVINFINITE for no timeout.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful, or pFrame is not on the queue.

ePvErrUnplugged Camera was unplugged.

ePvErrTimeout Timeout occurred before exposure completed.

Notes

This function cannot be run from the frame-done callback.

This function waits until the frame is complete. When this function completes, you may delete
or modify your frame structure, and use the contents of the image buffer.

If pFrame is not on the frame queue, ePvErrSuccess is returned. The driver must assume that if
the frame buffer is not on the queue, it is already complete.

 44

PvCommandRun

Run a command. A command is a "valueless" attribute, which executes a function when written.

Prototype

tPvErr PvCommandRun
(
 tPvHandle Camera,
 const char* Name
);

Parameters

Camera Handle to open camera.

Name Command (attribute) name.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound The attribute does not exist.

ePvErrWrongType The attribute is not a command type.

 45

PvInitialize

Initialize the PvAPI module. You can’t call any PvAPI functions, other than PvVersion, until the
module is initialized.

Prototype

tPvErr PvInitialize
(
 void
);

Parameters

None.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrResources Some required system resources were not available.

Notes

After initialization, the PvAPI module will asynchronously search for connected cameras. It may
take some time for cameras to show up, therefore check that PvCameraCount() does not return 0
before proceeding with a PvCameraList call.

Example
 tPvCameraInfo list;

if(!PvInitialize())

 {

 while(PvCameraCount() == 0)

 Sleep(250); // wait for any camera

PvCameraList(&list,1,NULL);

…

}

else

 printf("failed to initialize the API\n");

 46

PvLinkCallbackRegister

Register a callback for link (interface) events, such as detecting when a camera is plugged in.
When the event occurs, the callback is run.

Prototype

tPvErr PvLinkCallbackRegister
(
 tPvLinkCallback Callback,
 tPvLinkEvent Event,
 void* Context
);

Parameters

Callback Callback to run. Must be thread safe.

Event Event of interest.

Context Defined by the caller. Passed to your callback.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

Notes

Multiple callback functions may be registered with the same event.

The same callback function may be shared by different events.

It is an error to register the same callback function with the same event twice.

Callback must be un-registered by PvLinkCallbackUnRegister (page 47) when no longer
required.

 47

PvLinkCallbackUnRegister

Un-register a link event callback.

Prototype

tPvErr PvLinkCallbackUnRegister
(
 tPvLinkCallback Callback,
 tPvLinkEvent Event
);

Parameters

Callback Callback to run. Must be thread safe.

Event Event of interest.

Return Value

tPvErr type error code. Typical error codes for this function:

ePvErrSuccess Function successful.

ePvErrNotFound Callback/event is not registered.

 48

PvUnInitialize

Un-initialize the PvAPI module. This frees system resources used by PvAPI.

Prototype

void PvUnInitialize
(
 void
);

Parameters

None.

Return Value

None.

 49

PvUtilityColorInterpolate

Perform Bayer-color interpolation on raw bayer images. This algorithm uses the average value
of surrounding pixels.

Prototype

void PvUtilityColorInterpolate
(
 const tPvFrame* pFrame,
 void* BufferRed,
 void* BufferGreen
 void* BufferBlue,
 unsigned long PixelPadding,
 unsigned long LinePadding
);

Parameters

pFrame Raw Bayer image, i.e. source data.

BufferRed Output buffer, pointer to the first red pixel. This buffer is allocated by
the caller.

BufferGreen Output buffer, pointer to the first green pixel. This buffer is allocated
by the caller.

BufferBlue Output buffer, pointer to the first blue pixel. This buffer is allocated by
the caller.

PixelPadding Padding after each pixel written to the output buffer, in pixels. In other
words, the output pointers skip by this amount after each pixel is written
to the caller’s buffer. Typical values:
 RGB or BGR output: 2
 RGBA or BGRA output: 3
 planar output: 0

LinePadding Padding after each line written to the output buffers, in pixels.

Return Value

None.

Example

Generating a Windows Win32::StretchDIBits compatible BGR buffer from a Bayer8 frame:

 #define ULONG_PADDING(x) (((x+3) & ~ 3) - x)

 unsigned long line_padding = ULONG_PADDING(fram e.Width*3);
 unsigned long line_size = ((frame.Width*3) + li ne_padding;
 unsigned long buffer_size = line_size * frame.H eight;

 ASSERT(frame.Format == ePvFmtBayer8);

 unsigned char* buffer = new unsigned char[buffe r_size];

 PvUtilityColorInterpolate(&frame, &buffer[2], & buffer[1],
 &buffer[0], 2, line_p adding);

 50

PvVersion

Return the version number of the PvAPI module.

Prototype

void PvVersion
(
 unsigned long* pMajor,
 unsigned long* pMinor
);

Parameters

pMajor Major version number returned here.

pMinor Minor version number returned here.

Notes

This function may be called at any time.

Attribute Reference

 52

Attributes
Important notes about attributes:

1) Not all attributes are available on all cameras. In other words, don't assume an attribute
is available. See PvAttrIsAvailable.

2) For a particular enumeration attribute, the set may not contain all of the documented
values.

3) The value of some attributes impacts the availability or range of other attributes. For
example, BinningX impacts the range of Width.

4) For Read Only attributes listed below, they are marked with a V flag: volatile, can change
at any time, or a C flag: constant.

Note: many attributes in PvAPI are equivalent to GenICam features, but the PvAPI
attribute system is not GenICam. Prosilica GigE Vision cameras are GenICam compliant, and
we recommend you use a GenICam driver if you plan to support cameras from other
manufacturers.

For an alternate description of camera attributes, directed towards the end user, see Camera
Controls.pdf.

Image Mode

Image Mode attributes should be set up before Image Format attributes, since the region size and
pixel formats may depend on these mode attributes.

 Attribute Type Flags Description

 BinningX Uint32 R/W Horizontal binning. 1=no binning.

 BinningY Uint32 R/W Vertical binning. 1=no binning.

Image Format

Image Format attributes control the data content of acquired images.

 Attribute Type Flags Description

 Width Uint32 R/W Image width, in pixels.

 Height Uint32 R/W Image height, in pixels

 RegionX Uint32 R/W Start of region readout, in pixels; left edge.

 RegionY Uint32 R/W Start of region readout, in pixels; top edge.

 PixelFormat Enumeration R/W The image format. Value set: {Mono8, Mono16, Bayer8,
Bayer16, Rgb24, Rgb48, Yuv411, Yuv422, Yuv444, Bgr24.
Rgba32, Bgra32}.

 TotalBytesPerFrame Uint32 R/V Number of bytes per image.

 MirrorX Enumeration R/W Mirror the image in Width Value set: {On, Off}.

 53

Acquisition Control

The Acquisition Control attributes control image acquisition and the trigger source.

 Attribute Type Flags Description

 AcquisitionMode Enumeration R/W The acquisition mode of the camera. Value set:
Continuous After acquisition start event,

continuous acquisition.
SingleFrame After acquisition start event, wait for

one frame trigger and stop
acquisition.

MultiFrame After acquisition start event, wait for
N frame triggers and stop acquisition.
N is set via AcquisitionFrameCount.

Recorder After acquisition start event, camera
will continuously capture images into
the camera on-board memory. When
AcqRec trigger received, N images
sent to camera. N is set via
AcquisitionFrameCount. See also
RecorderPreEventCount.

 AcquisitionStart Command Start acquisition stream. Stream will continue until
AcquisitionStop is run, or depending on AcquisitionMode,
the expected number of frame triggers are received. See
FrameStartTriggerMode for triggering/acquiring images
within the stream.

 AcquisitionStop Command Stop acquisition stream.

 AcquisitionAbort Command Abort the ongoing acquisition. The camera will come out of
the acquisition mode as soon as possible, even when a very
large exposure time is set.

 AcquisitionFrameCount Uint32 R/W Frame count when the acquisition mode is MultiFrame or
Recorder. When in the later mode, the value should not be
larger than the value of the StreamHoldCapacity attribute.

 RecorderPreEventCount Uint32 R/W Number of frames to record, pre-event. The number of post-
event frames to be recorded will be AcquistionFrameCount
– RecorderPreEventCount.

 FrameStartTriggerMode Enumeration R/W The acquisition trigger. Value set:
Freerun Continuous trigger.
SyncIn1 External trigger input.
SyncIn2 External trigger input.
SyncIn3 External trigger input.
SyncIn4 External trigger input.
FixedRate Fixed frame-rate generator.
Software Acquire when

FrameStartTriggerSoftware
command is run.

 FrameStartTriggerEvent Enumeration R/W External trigger event. Value set:
EdgeRising
EdgeFalling
EdgeAny

 54

LevelHigh
LevelLow

 FrameStartTriggerDelay Uint32 R/W External trigger delay, in microseconds.

 FrameRate Float32 R/W Fixed rate generator; frames per second.

 FrameStartTriggerSoftware Command Software-controlled acquisition trigger.

 AcqEndTriggerEvent Enumeration R/W Acquisition end external trigger event. Value set:
EdgeRising
EdgeFalling
EdgeAny
LevelHigh
LevelLow

 AcqEndTriggerMode Enumeration R/W Acquisition end external trigger mode. Value set:
SyncIn1 External trigger input.
SyncIn2 External trigger input.
SyncIn3 External trigger input.
SyncIn4 External trigger input.
Disabled Disabled

Set to Disabled and use AcquisitionStop command for
software triggering.

 AcqRecTriggerEvent Enumeration R/W Recorder external trigger event. Value set:
EdgeRising
EdgeFalling
EdgeAny
LevelHigh
LevelLow

 AcqRecTriggerMode Enumeration R/W Recorder external trigger mode. Value set:
SyncIn1 External trigger input.
SyncIn2 External trigger input.
SyncIn3 External trigger input.
SyncIn4 External trigger input.
Disabled Disabled

There is no software trigger event capability for this mode.

 AcqStartTriggerEvent Enumeration R/W Acquisition start trigger event. Value set:
EdgeRising
EdgeFalling
EdgeAny
LevelHigh
LevelLow

 AcqStartTriggerMode Enumeration R/W Acquisition start trigger mode. Value set:
SyncIn1 External trigger input.
SyncIn2 External trigger input.
SyncIn3 External trigger input.
SyncIn4 External trigger input.
Disabled Disabled

Set to Disabled and use AcquisitionStart command for
software triggering.

 55

Feature Control

 Attribute Type Flags Description

 ExposureMode Enumeration R/W Exposure mode. Value set:
Manual Exposure is controlled by

ExposureValue.
Auto Continuous auto-exposure.
AutoOnce Auto-exposure until complete, then

revert to Manual mode.

 ExposureValue Uint32 R/W/V Exposure time, in microseconds.

 ExposureAutoAdjustDelay Uint32 R/W Currently unimplemented.

 ExposureAutoAdjustTol Uint32 R/W In percent. A threshold. Sets a range in variation from
ExposureAutoTarget in which the autoexposure algorithm
will not respond. Can be used to limit exposure setting
changes to only larger variations in scene lighting.

 ExposureAutoAlg Enumeration R/W
The following algorithms can be used to calculate auto-
exposure:

Mean – The arithmetic mean of the histogram of the current
image is compared to ExposureAutoTarget, and the next
image adjusted in exposure time to meet this target. Bright
areas are allowed to saturate.

FitRange – The histogram of the current image is measured,
and the exposure time of the next image is adjusted so bright
areas are not saturated. Generally, the Mean setting is
preferred.

 ExposureAutoMax Uint32 R/W In microseconds. Upper bound to the exposure setting in
auto exposure mode. This parameter is very useful in
situations where framerate is important and when the camera
is run in FreeRunning mode. This value would normally be
set to something less than 1x10^6/(desired frame rate).

 ExposureAutoMin Uint32 R/W In microseconds. Lower bound to the exposure setting in
auto exposure mode. Normally, this number would be set to
the minimum exposure time that the camera is capable of.

 ExposureAutoOutliers Uint32 R/W In percent. The percentage of image pixels that do not have
to fit into the proper exposure range.

 ExposureAutoRate Uint32 R/W In percent. Determines the rate at which the autoexposure
function changes the exposure setting.

 ExposureAutoTarget Uint32 R/W In percent. Controls the general lightness or darkness of the
auto exposure feature; specifically the target mean histogram
level of the image, 0 being black, 100 being white.

 GainMode Enumeration R/W Gain mode. Value set: {Manual}.

 GainValue Uint32 R/W In dB. GdB = 20 log10(V in/Vout). The gain setting applied to
the sensor.

 GainAutoAdjustDelay Uint32 R/W Currently unimplemented.

 GainAutoAdjustTol Uint32 R/W In percent. A threshold. Sets a range in variation from

 56

GainAutoTarget in which the auto gain algorithm will not
respond. Can be used to limit gain setting changes to only
larger variations in scene lighting.

 GainAutoMax Uint32 R/W In dB. Maximum gain value allowed to be set by the auto-
gain function.

 GainAutoMin Uint32 R/W In dB. Minimum gain value allowed to be set by the auto-
gain function.

 GainAutoOutliers Uint32 R/W In percent. The percentage of image pixels that do not have
to fit into the auto gain range.

 GainAutoRate Uint32 R/W In percent. Determines the rate at which the auto gain
function changes the gain setting.

 GainAutoTarget Uint32 R/W In percent. Controls the general lightness or darkness of the
Auto gain feature. A percentage of the maximum GainValue.

 WhitebalMode Enumeration R/W
Manual – Auto whitebalance off.

Auto – Auto whitebalance on. Whitebalance will
continuously adjust according to the current scene.

AutoOnce – A single iteration of the auto whitebalance
algorithm is run, and then the camera reverts to Manual
WhitebalMode.

 WhitebalValueRed Uint32 R/W Red gain expressed as a percentage of the camera default
setting.

 WhitebalValueBlue Uint32 R/W Blue gain expressed as a percentage of the camera default
setting.

 WhitebalAutoAdjustDelay Uint32 R/W
Currently unimplemented.

 WhitebalAutoAdjustTol Uint32 R/W A threshold. This parameter sets a range of scene color
changes in which the automatic whitebalance will not
respond. This parameter can be used to limit whitebalance
setting changes to only larger variations in scene color.

 WhitebalAutoAlg Uint32 R/W The whitebalance algorithm is fixed as "Mean", that is, the
algorithm uses the mean histogram value for the red and blue
channels in its calculations.

 WhitebalAutoRate Uint32 R/W How fast the Auto white balance will update. This can be
used to slow the rate of color balance change so that only
longer period fluctuations affect color.

 OffsetMode Enumeration R/W Offset mode. Value set:

Manual Offset controlled by OffsetValue

 OffsetValue Uint32 R/W/V Offset value, unitless.

 DSPSubregionLeft Uint32 R/W

 DSPSubregionTop Uint32 R/W

 DSPSubregionRight Uint32 R/W

 DSPSubregionBottom Uint32 R/W

The DSP subregion for auto-exposure and auto-whitebalance
algorithms. This DSP subregion is relative to the image
region. To use the full image region, set the left and top to 0,
and the right and bottom to 0xFFFFFFFF. The default DSP
subregion is the full image region.

 IrisMode Enumeration R/W
Video-type auto iris lenses have a default reference voltage.
When a voltage larger than this reference voltage is applied
to the lens, the iris closes. When a voltage is applied less
than this reference voltage, the iris closes. The auto iris
algorithm calculates the appropriate voltage, IrisVideoLevel,
to apply to the lens, based on the brightness of the current

 57

image vs. the IrisAutoTarget.

Disabled Off

Video The camera outputs a video-iris
signal

VideoOpen Fully open the iris

VideoClosed Fully close the iris

 IrisAutoTarget Uint32 R/W In percentage. Desired mean value of the image data when in
automatic mode.

 IrisVideoLevelMin Uint32 R/W In 10 mV units. Minimum video-iris level output by the
camera.

 IrisVideoLevelMax Uint32 R/W In 10 mV units. Maximum video-iris level output by the
camera.

 IrisVideoLevel Uint32 R/V In 10 mV units. Current video-iris level.

 DefectMaskColumnEnable Enumeration R/W When On, the camera will mask any factory known column
defect.

IO Control

 Attribute Type Flags Description

 SyncInLevels Uint32 R/V Input levels. Bit 0 is sync-in 0, Bit 1 is sync-in 1, etc.

 SyncOutGpoLevels Uint32 R/W GPO output levels. Bit 0 is sync-out 0, bit 1 is sync-out 1,
etc.

 SyncOut1Mode Enumeration R/W Function of sync-out 1. Value set: {GPO,
AcquisitionTriggerReady, FrameTriggerReady,
FrameTrigger, Exposing, FrameReadout, Imaging,
Acquiring, SyncIn1, SyncIn2, SyncIn3, SyncIn4, Strobe1,
Strobe2, Strobe3, Strobe4}.

 SyncOut1Invert Enumeration R/W Invert sync-out 1 line: On or Off.
 SyncOut2Mode Enumeration R/W See SyncOut1Mode.
 SyncOut2Invert Enumeration R/W See SyncOut1Invert.

 SyncOut3Mode Enumeration R/W See SyncOut1Mode.

 SyncOut3Invert Enumeration R/W See SyncOut1Invert

 Strobe1Mode Enumeration R/W Input signal into strobe 1. Value set:
{ AcquisitionTriggerReady, FrameTriggerReady,
FrameTrigger, Exposing, FrameReadout, Acquiring,
SyncIn1, SyncIn2, SyncIn3, SyncIn4}.

 Strobe1Delay Uint32 R/W Strobe delay in microseconds, from strobe input to strobe
output.

 Strobe1ControlledDuration Enumeration R/W When On, strobe duration is controlled. When Off, the
strobe duration matches the input signal.

 Strobe1Duration Uint32 R/W Duration in microseconds, when
StrobeXControlledDuration is On.

 58

GigE Vision

 Attribute Type Flags Description

 PacketSize Uint32 R/W In Bytes. Size of image data packet. This size includes the
GVSP, UDP, and IP headers.

 StreamBytesPerSecond Uint32 R/W Bandwidth of image data, in bytes per second.

 GvcpRetries Uint32 R/W Number of retries per GVCP command, before giving up.

 HeartbeatTimeout Uint32 R/W GVCP heartbeat timeout, in milliseconds.

 HeartbeatInterval Uint32 R/W Interval, in milliseconds, at which the API must send a heartbeat
command to the camera. The value must be smaller than the
HeartbeatTimeout.

 StreamHoldEnable Enumeration R/W Image stream hold: On to pause the image stream, Off for
normal operation. For example, StreamHold could be turned On
and then a number of frames could be captured into memory;
when stream hold is turned Off again, those captured images are
transmitted to the host.

 StreamHoldCapacity Uint32 R/V Number of frame that can be captured in memory with the
current frame settings.

 DeviceEthAddress String R/C MAC address of the camera

 DeviceIPAddress String R/C IP address of the camera

 HostEthAddress String R/C MAC address of the host (of the adapter on which the camera
was detected)

 HostIPAddress String R/C IP address of the host (of the adapter on which the camera was
detected)

 MulticastEnable Enumeration R/W On to instructs the camera to multicast its stream instead of
unicasting it. The value of the attribute should be changed
before the stream is started by the master application. If the
application is a monitor, it doesn’t need to change this attribute.
The API will detect that the camera is multicasting and handle
such case automatically.

 MulticastIPAddress String R/W IP address to be used by the camera for the multicasting. A
default value is provided. If you need to change it, make sure it
is in the range of supported multicast addresses.

 BandwidthCtrlMode Enumeration R/W Select the desired mode of bandwidth control. Value set :
{StreamBytesPerSecond, SCPD, Both}.

Information

 Attribute Type Flags Description

 CameraName String R/W Human readable camera name, such as "EngineRoomCam1”.
 ModelName String R/W Human readable model name, such as “GE650”. Software

should use the PartNumber and PartVersion to distinguish
between models.

 59

 UniqueId Uint32 R/C An identifier unique to each Prosilica camera, regardless of
model.

 PartNumber Uint32 R/C

 PartVersion Uint32 R/C

 SerialNumber String R/C

The elements of a Prosilica serial number. For example, a
camera labeled "02-2010A-04000" has a PartNumber 2010,
PartVersion A, and SerialNumber 4000.

The SerialNumber is not a unique identifier across models;
software should use UniqueId instead.

 PartRevision String R/C Revision code. Generally unimportant, as functionality does not
change between revisions.

 FirmwareVerMajor Uint32 R/C Camera firmware version, major.

 FirmwareVerMinor Uint32 R/C Camera firmware version, minor.

 FirmwareVerBuild Uint32 R/C Camera firmware build.

 SensorType Enumeration R/C Sensor type. Values are "Mono" and "Bayer".

 SensorBits Uint32 R/C Maximum bit depth of sensor ADC.

 SensorWidth Uint32 R/C Maximum width of sensor.

 SensorHeight Uint32 R/C Maximum height of sensor.

 TimeStampFrequency Uint32 R/C Timestamp frequency, in Hz.

Non-Volatile Configuration Files

 Attribute Type Flags Description

 ConfigFileLoad Command Load the camera configuration from the non-volatile memory
file selected by ConfigFileIndex.

 ConfigFileSave Command Save the current camera configuration to the non-volatile
memory file selected by ConfigFileIndex.

 ConfigFileIndex Enumeration R/W Memory file to be used for loading or saving the camera
configuration. “Factory” is the factory default settings file; this
file cannot be overwritten.

 ConfigFilePowerUp Enumeration R/W Memory file loaded on camera power-up or reset.

 60

Statistics

 Attribute Type Flags Description

 StatDriverType Enumeration R/V Type of the streaming driver in use. Value set = {Standard,
Filter, Performance}

 StatFilterVersion String R/C Version of the filter driver installed on the host (Windows only)

 StatFrameRate Float32 R/V Current frame rate of the camera

 StatFramesCompleted Uint32 R/V Numbers of frames successfully acquired

 StatFramesDropped Uint32 R/V Numbers of frames unsuccessfully acquired

 StatPacketsErroneous Uint32 R/V Numbers of erroneous packet received

 StatPacketsMissed Uint32 R/V Numbers of packets sent by the camera but not received by the
host

 StatPacketsReceived Uint32 R/V Number of packets sent by the camera and received by the host

 StatPacketsRequested Uint32 R/V Number of missing packets requested to the camera for resent

 StatPacketsResent Uint32 R/V Number of missing packets resent by the camera and received
by the host

